This is an update for previous post.
http://lengerrong.blogspot.com/2017/04/create-your-own-dataset-for-machine.html
It is hard to collect enough images for your machine traning.
So I update this post to append images once you find some to your existed dataset.
All you need to do is copy your images to a folder and run the python script.
Of cause, you have to label each image while running the python script.
Below python script just have two label, 0 means cat, 1 means dog.
You can add more labels by just modify blue codes.
Showing posts with label python. Show all posts
Showing posts with label python. Show all posts
How to fix tf.nn.in_top_k out of range issue: tensorflow.python.framework.errors_impl.InvalidArgumentError: targets[0] is out of range
tensorflow.python.framework.errors_impl.InvalidArgumentError: targets[0] is out of range
[[Node: InTopK = InTopK[T=DT_INT32, k=1, _device="/job:localhost/replica:0/task:0/cpu:0"](softmax_linear/softmax_linear, Reshape_1)]]
Caused by op u'InTopK', defined at:
[[Node: InTopK = InTopK[T=DT_INT32, k=1, _device="/job:localhost/replica:0/task:0/cpu:0"](softmax_linear/softmax_linear, Reshape_1)]]
Caused by op u'InTopK', defined at:
python show an image via subprocess.Popen
import tensorflow as tf
import Image
import os
import subprocess
def main(argv):
folder = argv[0]
if (len(argv) > 1):
if tf.gfile.Exists(argv[1]):
folder = argv[1]
else:
print ('%s not existed' % argv[1])
return
else:
print ("please input training image data folder path")
return
for f in tf.gfile.ListDirectory(folder):
filepath = os.path.join(folder, f)
try:
im = Image.open(filepath)
p = subprocess.Popen(["display", filepath])
label = raw_input("please label the image, 0 means cat, 1 means dog:")
p.kill()
except Exception, e:
print (e)
import Image
import os
import subprocess
def main(argv):
folder = argv[0]
if (len(argv) > 1):
if tf.gfile.Exists(argv[1]):
folder = argv[1]
else:
print ('%s not existed' % argv[1])
return
else:
print ("please input training image data folder path")
return
for f in tf.gfile.ListDirectory(folder):
filepath = os.path.join(folder, f)
try:
im = Image.open(filepath)
p = subprocess.Popen(["display", filepath])
label = raw_input("please label the image, 0 means cat, 1 means dog:")
p.kill()
except Exception, e:
print (e)
python Thread.join & setDaemon sample
prototype:
join([timeout]) # wait the child thread complete
setDaemon(True) # once the daemon thread complete, the child thread complete too.
from threading import Thread
from PIL import Image
class ImageThread(Thread):
def __init__(self, filepath):
Thread.__init__(self)
self.filepath = filepath
self.openresult = 0
def run(self):
try:
im = Image.open(self.filepath)
im.show()
self.openresult = 1
except Exception, e:
print (e)
imt = ImageThread('image.gif')
imt.setDaemon(True) # should set before start
imt.start()
imt.join(10) # wait 10 seconds
join([timeout]) # wait the child thread complete
setDaemon(True) # once the daemon thread complete, the child thread complete too.
from threading import Thread
from PIL import Image
class ImageThread(Thread):
def __init__(self, filepath):
Thread.__init__(self)
self.filepath = filepath
self.openresult = 0
def run(self):
try:
im = Image.open(self.filepath)
im.show()
self.openresult = 1
except Exception, e:
print (e)
imt = ImageThread('image.gif')
imt.setDaemon(True) # should set before start
imt.start()
imt.join(10) # wait 10 seconds
Solution for no image display after call Image.show via python
simple python code like:
from PIL import Image
image = Image.open('image.gif')
image.show()
no image display while running on ubuntu system.
The easy solution is:
sudo apt-get install imagemagick
from PIL import Image
image = Image.open('image.gif')
image.show()
no image display while running on ubuntu system.
The easy solution is:
sudo apt-get install imagemagick
Subscribe to:
Posts (Atom)
fixed: embedded-redis: Unable to run on macOS Sonoma
Issue you might see below error while trying to run embedded-redis for your testing on your macOS after you upgrade to Sonoma. java.la...
-
F:\webrowser>react-native run-android Scanning folders for symlinks in F:\webrowser\node_modules (73ms) Starting JS server... Buildin...
-
Refer: https://github.com/bazelbuild/bazel/wiki/Building-with-a-custom-toolchain https://www.tensorflow.org/tutorials/image_recognition
-
Solution react-native bundle --platform android --dev false --entry-file index.js --bundle-output android/app/src/main/assets/index.android...